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Propagation in Transversely Magnetized
Compressible Plasma Between Two Parallel
Planes

HILLEL UNZ, SENIOR MEMBER, IEEE

Abstract — The propagation of waves in compressible single fluid macro-
scopic plasma between two parallel, perfectly conducting planes, with a
transverse static magnetic field parallel to the boundaries is investigated. It
is shown that the TE waves are not affected by either the static magnetic
field or the compressibility of the plasma, while the TM wave will be
affected by both.

1. INTRODUCTION

N RECENT years there has been great interest in
. gyrotropic media propagation and their various wave-
guide applications. Most of the theoretical and experimen-
tal published works discussed propagation in gyrotropic
magnetized ferrites and their applications as waveguide
components. Gamo [1], Kales [2], Suhl and Walker [3], and
Ginzburg [4] solved the problem of a circular waveguide
completely filled with a longitudinally magnetized ferrite.
Van Trier [5] discussed the modes which can exist in
parallel plane waveguide. Mikaelyan [6] solved the problem
of propagation between parallel planes perpendicular to
the static magnetic field. Barzilai and Gerosa [7] discussed
the different modes in rectangular waveguides filled with
magnetized ferrites. A general theoretical approach to this
problem was given by Epstein [8]. Numerous other refer-
ences may be found elsewhere [9], [10].

The similarity between the permeability tensor describ-
ing the behavior of the magnetized ferrite and the dielectric
tensor describing the behavior of the magneto-ionic plasma
has been pointed out previously [3], [8]. Experimental
results nf propagation of electromagnetic waves in a rect-
angular waveguide filled with magnetized plasma were
given by Goldstein [11].

The aim of the present paper is to solve a waveguide
boundary value problem for compressible magnetoplasma,
taking into account the electron-gas-dynamics as well as
the electromagnetic boundary conditions. The propagation
of waves will be discussed in compressible single fluid
macroscopic plasma between two perfectly conducting
parallel planes, with transverse magnetostatic field parallel
to the boundaries.
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The two parallel perfectly conducting planes are given at
x=0 and at x=a. The transverse static magnetic field
parallel to the boundaries is given in the y direction, with
the waves propagating in the z direction.

II. THE Basic EQuATIONS

In the macroscopic equations in the continuum theory of
plasma dynamics for single fluid hot compressible magne-
toplasma are given by six partial differential equations,
three of them vector equations and three of them scalar
equations [12]-[14], in terms of the following variables:

electric field in V /m,
magnetic field in A /m,
velocity vector in m /s,
pressure in kg /ms?,
number density in 1/m’,
temperature in K.

N2 Sty

Denoting the stationary values of the variables of the
plasma by subscript 0, it will be assumed that the plasma is
stationary (#, — 0), that there is no net electrostatic field
( EOZO) and that there is an arbitrarily directed static
magnetic field ( ﬁo # 0). It will be further assumed that the
electron gas is an inviscid fluid (n=0), that there is no
heat conduction (x = 0) and that the collision frequency of
the electrons with the neutral particles may be neglected
(v=20).

Using “small signal theory” approximation and assum-
ing harmonic time variation e***’, the basic equations for
the compressible hot magnetoplasma could be written in
the following form, using the above assumptions in the
electromagneto-plasma-gas-dynamics equations [12]-]14].

The Maxwell’s equations

VXE=—iouH (1a)
V X H=iweE — eN,ii. (1b)
The equation of state
P N T
L=+, = KN,T,. lc
Po N() TO Do 0-0 ( )
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The conservation of mass

NyV-u= —iwN.

(1d)
The conservation of momentum

iwmN,yit = —vp — eNyE — epNyit X H,,.

(e)

The conservation of energy

(1f)

iwomN,C,T= — p,V -u.
We define

permeability of free space,

dielectric constant of free space,
positive electron charge,

mass of electron,

m(C, — C,) = Boltzmann constant,

G, ~ specific heat in constant pressure

C,  specific heat in constant volume

N omy o E

Equations (1) describe the behavior of the plasma waves in
single fluid hot compressible magnetoplasma in terms of
three vector equations (1a), (1b), (le), and three scalar (lc¢),
(1d), (1f), with the stationary known constants
Po- Ny, Ty, Hy and the varying unknown wave components
E Hu p, N, T

From (1c), (1d), and (1f) one finds the following:

N _1p_ 1 T _-1_.
NO_SPO_S“ITO_Z(OVM. (2)
Substituting (1a) into (1b)
VXV XE —kE =iopeN,i (3a)

where

ko= wype = % = free-space wavenumber.
Substituting (2) into (1(e))
. __5p, _ = T
iomNyi = o V(v -ii)— eNyE — epN,ii X Hy. (3b)

Let us define

opy
a,— ﬁ]% :\/g%(cp_cv)

= acoustic velocity in electron gas.
w C

k, = — = —k, = acoustic wavenumber
a4

= epH

7=t
mew

Dividing (3b) by iwmN, on both sides and using the
above definitions

ﬁ:—i
ki

(3c)

V(V-0)+F—~—E+axiY
wWm
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and substituting (3a) into (3¢c) and defining X = e2N, /w’em

1 — — —
——zvxvxE+—12—v(v-E)+(1—X)E
kO kl

L (v Xy X E—k2E)xiF=0. (4)

+ —
kg

Equation (4) represents the wave equation for the electric
field E.

Once the electric field is found using (4), one may find
the magnetic field H from (1a):

T="loxE
oy

(52)
and the velocity field u from (3a)

__ lwe
u=—"

o (5b)

E—LVXVXE .
kg

The rest of the variables may be found by substituting
(5b) into (2)

(5¢)

By assuming one arbitrary component of the electric
field E, for example E,, to be given in the rectangular
system of coordinates, one may find all the rest of the
plasma wave components, E_, E, H, i, p, N, T in terms of
E, using (4) and (5).

I11I. PROPAGATION IN PARALLEL PLANE

WAVEGUIDE

Let us assume that the compressible magnetoplasma is
confined by two perfectly conducting parallel planes at
x=0 and x=a with the magnetostatic field in the y
direction:

_ H,
T=yp="E70p

(6)

Since the solution will be independent of y, one may
assume that each one of the plasma wave components will
be in the form

mw

E (x,2) = E/(a)e™ e @) (7)
where j = x, y, z.

The constant y will represent the propagation constant
of the plasma wave modes in the z direction; it will be
dependent on « which will be determined from the
boundary conditions.

Substituting (6) and (7) into (4) and taking from (7)
3/0x=ia, 0/0y=0,0/0z= —iy:

G, 0 Gylpg»
0 G, 0 |g»|=0 (8a)
GSI 0 G33 E*
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G, =k:(1—X)—0a’—y2—iayY (8b)
Gy=—(1—0)ay+i(ki—a®)Y (8¢)
Gy =ki(1—X)— o —y? (8d)
G31:“(1‘0)0‘Y"'(k3‘7’2)y (8e)
Gy =ki(1—X)—a* —oy? tiayY (8f)

where k3 = w'pe and o = ai /c? =k / k7.
For a nontrivial solution the determinant of the coeffi-
cients (8) should be zero. Developing the determinant

G22:k§(l—X)—a2772:O (9a)

GG — G 3Gy =o(a’ + Y2)2 = kg(a®+v?)

J+0)1=X)- Y]+ &[(1-X)*—v?| =0. (9b)
It will be shown later that (9a) represents the TE mode
while (9b) represents the TM mode.

According to the theory of linear equations, one may
disregard now one of the equations in (8a), for example the
last one, and obtain from the two remaining equations:

GpE"=0
_Gn
Gy,

(10a)

_ O

E*=
G31

Ef= E-. (10b)
The rest of the plasma wave components will be found by
using (5).

The following boundary conditions will be applied to the
present problem:

E.=0 x=90,a (11a)
E. =0 x=0,a (11b)
u, =0 x=0,a. (12)

IV. THe TE MODES

In the present section we will discuss the TE mode,
where there is no electric field component in the direction
of propagation :, one derives from (10)

E.=E_=0. (13a)
Using (7) and the boundary condition (11b)
E, = Asin i”g’ixe“wmﬂ (13b)

where m = integer. From (9a) the propagation constant is

ma \2
v =k31-X)— (") (14)
Using (13) and (5a) one obtains
_Laﬂﬁ —_ Y . omw Hwt—vyI)
T Tem Bz apd S xe (15a)
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H,=0 (15b)
o LBy mT T e e,
z lwp 0x oy a a
(15¢)
From (5b), (13), and (14)
u,=u,=0 (16a)
e ie . mll (wi—vy2)
u, =——FE = —Asin——xe'l*"" " (16b)
Yowm Y wm a
From (5¢) and (13) is

Equations (13)—(17) give the plasma wave components
and the propagation constant of the TE wave. The TE
wave is not influenced at all by the static magnetic field
since the motion of the plasma is along the magnetostatic
field. The TE wave is not affected by the compressibility of
the plasma.

V. THE TM MODES

The propagation constant equation for the TM modes is
given by (9b). Assuming that the propagation constant y is
given, one may solve the quadratic equation (9b)

&(aiz-l—yz):(leo)(l—X)—Yz

“{[(1-0)1— X)= 7] +4ox7?}'% (18)
For each propagation constant *+y one has four related
solutions =+ a; and * «,.

Using (10) and (18) one has

Ey:o (193)
E,=[A4,sina;x + B cosa,x
+ A,sina,x + Bycosa,x]e’“ v (19b)

where a, a, are related to y in accordance with (18).
From (10b) one obtains

E* G ]
E::——é?:iC(a“)JrD(az)a (200)
where
C(aZ):Y(l—d)az}ﬂ_(k%—.}ﬁ)[ké(l_X)_az_oyz]
(1—0)a®y? +(kZ—v2)’¥?
plat) = Lk = X)—a® —ay?] 4 y¥2(ki — v7)

(1—0) a2y2+ (k2 —v2)'r?

Using the operator 9 /0x = +ia, (20a) may be rewritten as
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follows:

E,=i| C(e?)E, ~ D(a?) (20b)

Using the notation C(ef,)=C,, and D(a?,)=D
one may obtain by substituting {19b) into (20b):
E_=ilP, sfna,x + Q,cosa;x + P,sina,x

+Q,cos a,x]e'“ 1) (19c)
where we define
P,=A4,C,+a,B D,

Q,=B\C,—a4,D,
A,C, +a,B,D,
0,=B,(, —a,4,D,.

By substituting (19) into (5a) one may find the magnetic
field as follows:

H,=H,=0

_ i[9 _
Hy- [axE‘ yE]

and substituting (19) into (21b)

(21a)

(21b)

i . .
H,=—[R;sina;x + S;cosa;x + R,sina,x
> wp

+ §,cosa,x]e’ 7Y (21c)
where we define
R, = — Bia; +vP,
Sy =44, +v9Q,
R,= —B,a, +vP,
$; = A0, +v0Q,.

Since H, =0 in (21a) we are justified in calling it the TM
mode of propagation.
By substituting (19) into (5b) one may find

=0 (22a)
oE, ]
ax

aai ] (220)

iwe

u, = k2—
¥ eNOké{( 0

iwe
L= kz_ 2
" eNOkg‘ [( 0 a) z

Y2)E, +iy (22b)

Substituting (19) into (5¢)

N_1
N, S

_L
S—

ﬁﬂ(n@

'ﬂ[ﬂ

i :_i_ ;
P eN, [W z

and (19b) and (19c¢) into (22b) becomes
we

Uy = — =[Visina;x + W, cosa;x + ¥, sina, x
eN, k2

+ W,cos a,x]e’wr—r?)

(23)
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where one has

=( 72) —ya, B,
W, =(k2=72)0, +yay 4,
:( 72)P2 Ya, B,

W, = (k3 —v2)Q, +va,4,. (24)

Substituting the definitions from (19¢) one could rewrite
the above as follows:

Vi=G,A,+ H,B,

W,= — H,A, +G,B,
V,=G,4,+ H,B,
W,= — H,d, +G,B, (25)
where we define
G, :(k(%—YZ)Cl
H,=a,D (k3 — v )—ay
= (k3 —v*)C,
Hy=a,D,(k3—v?)— a,y. (26)

Similarly one could derive the explicit expressions for
u,, N, p, T by substituting (19) in (22).

In order to evaluate the plasma wave TM mode compo-
nents one Will have to find the characteristic values a;,a,, y
from the boundary conditions. In the next section we will
derive the equation for those eigenvalues.

VI. THE TM MoODES CHARACTERISTIC VALUES

In the present section we will derive the transcendental
equation for the characteristic values of the TM modes,
subject to the boundary conditions, ‘

Using the boundary conditions (11a) in (19b)

B,+B,=0 (27a)
A;sinaja+ B,cosa,a+ A,sina,a + B,cosa,a =0.
(27b)

From (19a) one sees that the boundary conditions (11b) are
satisfied identically.

Substituting the boundary conditions (12) in (23) and

using (25)

(— H\4,+ G B))+(— H,4,+G,B,) =0

(G\4,+ HB))sinaya+(—H 4,+G,B,)cosa,a

+(G,4,+ H,B,)sina,a+

(— HyA,+ G, By)cosaya=0. (28b)

(28a)

From (27) and (28) one obtains four linear homogeneous
equations with four unknowns 4,, B, 4,, B,. For a non-
trivial solution the determinant of the coefficients should
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be zero
4 B
0 1
sina,a cosa,a
—H, +G,
G sinaya- H;sinaja+
— H,cosaja + G cosaa

where G (v, a)), H (v, ), Gy(v, a,), Hy(v, a,) are defined
by (26). Developing the determinant (29)

2H,H,(1~ cosaacosa,a)

= [Hl2 + H? +(G, *Gz)z] sina;asina,a.
(30)
Substituting the values of |a,| and |«,| from (18) ex-
pressed in terms of y and the plasma parameters in (30)
one obtains a transcendental equation for the propagation
constant y. The solution of this transcendental equation
will give an infinite number of discrete solutions for y=1,,.
For each y,, of a particular TM mode one may find from
(18) «,,, and a,,, and using those characteristic values one
will be able to find the components of the plasma wave of
the particular TM,, mode under consideration.
For the particular case of incompressible cold plasma
one has a; =0 and ¢ = 0 and (9b) becomes

(1— X) —y?2
IEDCOCH
From (31) one has «, = a, = a and substituting it in (30)

[(H,— H,)" +(G,— G,)"] sin aa=0 (32)

o’ +y2 =k}

(31)

where (32) is an identity since
Hy(a;) = Hy(a,)
and
G(a,) =Gy(a,).
Using the boundary conditions one obtains a = nr/a.
Once the determinant of the coefficients (27), (28) has
been satisfied through (30), one may ignore one of the

equations, for example (28b) and rewrite (27) and (28) in
the form

B,+B,=0 (33a)

B cosa,a+ Bycosa,a+ A,sina,a= — A sinaa
(33b)
G B,+G,B,—H,A,= H/A,. (33¢c)

From (33) one may find

A, H(cosaya—cosaa)+(G,—G,)sinaa

A, H,(cosaya—cosa,a)—(G,— G,)sina,a
(34a)

B, H,sina,a— H,sinaa

A, Hy(cosa,a—cosa,a)—(G,—G,)sina,a

(34b)
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AZ BZ
0 1
sina,a CoS a,a
—H, +G, =0 (29)
Gysina,a-  H,sina,a+
— H,cosa,a  + G,cosasa
and
B, _ H,sinaja — H;sina,a B
A, Hy(cosaja—cosaya)— (G, —G,)sina,a A
(34¢)

For an arbitrary value of 4, one may find 4,. B, B,,
from (34). Substituting those values in (19b) one may find
E, in terms of the arbitrary amplitude 4,. Once E_ is
known, the rest of the plasma TM mode wave components
may be found by using the relations in the previous sec-

tion.

VII.

The propagation of plasma waves in compressible single
fluid macroscopic plasma, between two parallel perfectly
conducting planes with transverse magnetostatic field
parallel to the boundaries, has been discussed. Both the
electromagnetic and the electron-gas-dynamics boundary
conditions have been taken into account. It has been
shown that the TE plasma mode of propagation will not be
affected by either the magnetostatic field or by the com-
pressibility of the plasma. The TM plasma mode of propa-
gation will be affected by both the static magnetic field and
the compressibility of the plasma.

Other cases of propagation between parallel plane wave-
guides with magnetized compressible plasma will be dis-
cussed elsewhere.

SUMMARY
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Network Representation and Transverse

Resonance for Layered Anisotropic

Dielectric Waveguides

OTTO SCHWELB, MEMBER, IEEE

Abstract —First, the matrix wave impedance in an unbounded uniaxial
lossless dielectric material is determined. Next, the transformation proper-
ties of the input impedance of a terminated anisotropic layer are estab-
lished. It is then demonstratéd that the boundary conditions in an aniso-
tropic dielectric slab waveguide lead to a generalized transverse resonance
condition involving the previously obtained matrix input impedances. Net-
work equivalent representations are’ given for waveguides fabricated with
dielectrics in polar and longltudmal orientations. The results show that a
circuit approach to the analysis-and design of planar amsotroplc dlelectnc
waveguides is feasible and practlcable
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I. INTRODUCTION

HE CONCEPT of impedance and equlvalent net-

work representation is often used to obtain the dis-
pers1on charactenstlcs of isotropic waveguides. As a result
of the additional couphng mechanisms acting between field
components in an anisotropic dielectric, the wave imped-
ance expands into matrix form, and circuit equivalents are
a great deal more cumbersome than those in the isotropic
case. For this reason an1sotroplc layered wavegmdes are
seldom - treated by the methods of circuit analysis. Yet,
there are some important configurations where the network
approach prov1des both 1ns1ght and a s1mple solution to
the gu1dance problem ‘
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