
894 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQtTES, VOL. MIT-30, NO. 6, JUNE 1982

Propagation in Transversely Magnetized
Compressible Plasma Between Two Parallel

Planes

HILLEL UNZ, SENIOR MEMBER, IEEE

.4b.wracr —Tfse propagation of waves in compressible single fluid macro-

scopic plasma between two parallel, perfectly conducting planes, with a

transverse static magnetic field parallel to the boundaries is irwestigated. It

is shown that the ‘f’J? waves are not affected by either the static magnetic

field or the compressibility of the plasma, while the TM wave will be

affected by both.

I. INTRODUCTION

I N RECENT years there has been great interest in

gyrotropic media propagation and their various wave-

guide applications. Most of the theoretical and experimen-

tal published works discussed propagation in gyrotropic

magnetized ferrites and their applications as waveguide

components. Gamo [1], Kales [2], Suhl and Walker [3], and

Ginzburg [4] solved the problem of a circular waveguide

completely filled with a longitudinally magnetized ferrite.

Van Trier [5] discussed the modes which can exist in

parallel plane waveguide. Mikaelyan [6] solved the problem

of propagation between parallel planes perpendicular to

the static magnetic field. Barzilai and Gerosa [7] discussed

the different modes in rectangular waveguides filled with

magnetized ferrites. A general theoretical approach to this

problem was given by Epstein [8]. Numerous other refer-

ences may be found elsewhere [9], [10].

The similarity between the permeability tensor describ-

ing the behavior of the magnetized ferrite and the dielectric

tensor describing the behavior of the magneto-ionic plasma

has been pointed out previously [3], [8]. Experimental

results of propagation of electromagnetic waves in a rect-

angular waveguide filled with magnetized plasma were

given by Goldstein [ 11].

The aim of the present paper is to solve a waveguide

boundary value problem for compressible magnetoplasma,

taking into account the electron-gas-dynamics as well as

the electromagnetic boundary conditions. The propagation

of waves will be discussed in compressible single fluid

macroscopic plasma between two perfectly conducting

parallel planes, with transverse magnetostatic field parallel

to the boundaries.
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The two parallel perfectly conducting planes are given at

x = O and at x = a. The transverse static magnetic field

parallel to the boundaries is given in they direction, with

the waves propagating in the z direction.

H. THE BASIC EQUATIONS

In the macroscopic equations in the continuum theory of

plasma dynamics for single fluid hot compressible magne-

toplasma are given by six partial differential equations,

three of them vector equations and three of them scalar

equations [ 12]–[ 14], in terms of the following variables:

~ electric field in V/m,

@ magnetic field in A/m,

u velocity vector in m/s,

p pressure in kg/msz,

N number density in l/m3,

T temperature in K.

Denoting the stationary values of the variables of the

plasma by subscript O, it will be assumed that the plasma is

stationary ( tiO = O), that there is no net electrostatic field

(&= O) and th~t there is an arbitrarily directed static

magnetic field (HO # O). It will be further assumed that the

electron gas is an inviscid fluid (q = O), that there is no

heat conduction (X= O) and that the collision frequency of

the electrons with the neutral particles may be neglected

(V=o).

Using “small signal theory” approximation and assum-

ing harmonic time variation e+ ‘“2, the basic equations for

the compressible hot magnetoplasma could be written in

the following form, using the above assumptions in the

electromagneto-plasma-gas-dynamics equations [ 12]–[ 14].

The Maxwell’s equations

VX~= –iopH (la)

V X ~=itic~– eNOti. (lb)

The equation of state

p_N+~

PO–NO To’
p.= HVOTO. (lC)
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The conservation of mass

NOV . ii = – icoN.

The conservation of momentum

itimNOti= —~p —eNO~—epNOil X ~O.

The conservation of energy

itimNoCOT= — pov. ii.

We define

P
f

e

m

K

s

permeability of free space,

dielectric constant of free space,

positive electron charge,

mass of electron,

m( C. — C,,) = Boltzmann constant,P-. ,
~ _ speclflc heat in constant pressure
co – specific heat in constant volume “

Equations (1) describe the behavior of the plasma waves in
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and substituting (3a) into (3c) and defining X = e *NO/u*cm

(id) _ +vxvx E+ J&(v. E)+(l–x)E
o 1

(le)
K(j

(If) ~1~~ (4) rePresents the wave equation for the electric

Once the electric field is found using (4), one may find

the magnetic field ~ from (1a):

single fluid hot compressible magnetoplasma in terms of

three vector equations (1a), (lb), ( le), and three scalar ( It),

(id), (if), with the stationary known constants

P4>Yo, To, ~o and the Vaving unknown wave components

E, H, ii, p, N, T.

From (lc), (id), and ( lf) one finds the following:

N _lp 1 T_–1
——= — –~v. ii. (2)

~–spo S–lz

Substituting (la) into (lb)

(3a)

and the velocity field ii from (3a)

(5a)

~= ‘( )= E–-&7xvx E . (5b)
eNo o

The rest of the variables may be found by substituting

(5b) into (2)

N=~E– 1 ‘.
x Spo s–1~

–~v” E.
eNo

(5C)

By assuming one arbitrary component of the electric

field ~, for example EZ, to be given in the rectangular

system of coordinates, one may find all the rest of the

plasma wave components, EX, EY, ~, ii, p, N, T in terms of

E= using (4) and (5).

III. PROPAGATION IN PARALLEL PLANE

WAVEGUIDE

where Let us assume that the compressible magnetoplasma is

k.= u~ = ~ = free-space wavenumber, confined by two perfectly conducting parallel planes at

x = O and x = a with the magnetostatic field in the y

Substituting (2) into (l(e)) direction:

Spo
lQ V(V “ii)– eNo~–epNoti X fro. (3b)iamNoii= - (6)

Let us define Since the solution will be independent of y, one may

assume that each one of the plasma wave components will

.l=d~’=~

be in the form

EJ(x, z) = E~(a)ez”xe’tOt–Yzj (7)

= acoustic velocity in electron gas. wherej” = x, y, z.

kl=~=~ k.= acoustic wavenumber The constant y will represent the propagation constant
a, a, of the plasma wave modes in the z direction; it will be

dependent on a which will be determined from the
~= eP%

boundary conditions.
ma “

Substituting (6) and (7) into (4) and taking from (7)

Dividing (3b) by itimNo on both sides and using the a/ax= ia+ a/aY = @ a/az = – iY:

above definitions

~=–+v(v. ti)++~+tixi~ (3C)
I
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G1l=k;(l– X)–oa2–yz–iayY (8b)

G1~=–(l– u)ay+i(k~–a2)Y (8c)

Gzz=k:(l– X)–a2–y2 (8d)

G31= –(l–u)ay–i(k; –y2)Y (8e)

G3t=k~(l –X)–a2–uyz+iayY (8f)

where k: = tizpc and o = a~/c2 = k~/k~.

For a nontrivial solution the determinant of the coeffi-

cients (8) should be zero. Developing the determinant

Gzz=k;(l– X)–a2–y J=0 (9a)

[(l+o)(l-X )-Y’]+ k:[(l-X)2-Y2] =0. (9b)

It will be shown later that (9a) represents the TE mode

while (9b) represents the TM mode.

According to the theory of linear equations, one may

disregard now one of the equations in (8a), for example the

last one, and obtain from the two remaining equations:

Hy=o (15b)

(15C)

From (5b), (13), and (14)

Ux=u, =o (16a)

ie
E,= ‘A sin

m II
u}=— —xet(of– Yz)

u i?l tim
(16b)

a

From (5c) and (13) is

N=p=T=O. (17)

Equations ( 13)–(17) give the plasma wave components

and the propagation constant of the TE wave. The TE

wave is not influenced at all by the static magnetic field

since the motion of the plasma is along the magnetostatic

field. The TE wave is not affected by the compressibility of

the plasma.

GZZEY=O (lOa]
V. THE TM MODES

The propagation constant equation for the TM modes is

E-X=–%EZ=_G33
G,l

&~ (lob) @en bY (gb). Assurn@ that the propagation constant Y is
31 given, one may solve the quadratic equation (9b)

The rest of the plasma wave components will be found by ~.

using (5). ~(a:. +y2)=(l+ cr)(l-x)-Y2,-
The following boundary conditions will be applied to the O

present problem:

E2=0 ~=(), a (ha)
*{[(1 -0)(1 -X)-Y2]2+4CJXY2 )”2. (18)

E,=O x=O, a (1 lb) For each propagation constant ~ y one has four related

solutions ~ al and * a2.
Ux=o x= O,a. (12) Using (10) and (18) one has

IV. THE TE MODES EV=O (19a)

In the present section we will discuss the TE mode, E, = [A, sinalx+ Blcosalx

where there is no electric field component in the direction

of propagation z, one derives from (10)
+ z12sina2x + Blcosa2x]e’(u’-Yz) (19b)

EZ = EY= O.

Using (7) and the boundary condition (1 lb)

E, = A sin ~xe’(wr–yz)
a

where m = integer. From (9a) the propagation

y’=k;(l-x)-(&)2.

Using (13) and (5a) one obtains

(13a)
where al, az are related to y in accordance with (18).

From ( 10b) one obtains

( 13b)
where

E -’

E’ =
–*=iC(a2)+D(a2)a (20a)

constant is
~(a, )=y(l-o)a2y2-(k &y ’)[k;(l-X)-a2-oy2]

(14) (1-o)2a2y’ +(k&y2)2Y2

~(a2)= (1-u) Y[k:(l- X)-a2-oy2] +yY2(k; -y2)

(1-o) 2a’y2+(k&y2)2Y2 “

(15a) Using the operator a/i3x = + ia, (20a) maybe rewritten as
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follows:

[

8E 1EX=i C(a2)EZ– D(a2)# . (20b)

Using the notation C(a~,2) = C1,2 and D(a~,2) = Dl,2

one may obtain by substituting [19b) into (20b):

EX=i[P1sinalx +Qlcosa,x+Pzsinazx

+ Q2cosa2x]e’t’’’-~zJ (19c)

where we define

PI =A,c, +a, B,D,

QI =BIC1 – alA, D1

P2=A2Cz+a2B2D2

Qz=B2C2– a2AzD2.

By substituting (19) into (5a) one may find the magnetic

field as follows:

HX=HZ=O (21a)

[
HY=~ ~ EZ – iyEX

Up ax 1 (21b)

and substituting (19) into (2 lb)

HP = ~[R1sinalx +S, cosa1x+R2sinazx

+ S2cosa2x]e’(@’-Yz) (21c)

where we define

Rl = –Blal +yp,

S, =Alal +yQl

RI= –B1a2i-yP2

s2=A2(x2+yQ2.

Since HZ= O in (21a) we are justified in calling it the TM

mode of propagation.

By substituting (19) into (5b) one may find

Uy=o (22a)

iuc
[( )

aEz
ux=— k~–y2 EX+iY—

1
(22b)

eNOk; ax

itic
[( )

6E
uz=— k~–a2 EZ+jy~

1
(22C)

eNOk; ax .

Substituting (19) into (5c)

=–-=+YEA?I (2M)
N_l PIT

K Spo S–1 TO eJJo

and ( 19b) and ( 19c) into (22b) becomes

ux=— ~[~,sina,x+~,cos .lx+~,sina,x
eNO k.

+ W2COSazx]ei(u’–y’) (23)
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where one has

Vl=(k~–y2)Pi–yal Bl

W’l=(k; -i2)Q1+yaiA1

V2=(k&y2)P2-ya2Bz

Wz = (k; –y2)Q2 +ya2Az. (24)

Substituting the definitions from (19c) one could rewrite

the above as follows:

V1=GIA1+HIB1

WI= – HIA1 +GIB1

G =G2A2 +H2B2

W2= – H~A~+G2112 (25)

where we define

G,=(k; –y2)C1

H1=(xlD1(k; -y2)-aiy

G2=(k:–y2)C2

H2=a2D2(k&y2)-azy. (26)

Similarly one could derive the explicit expressions for

UZ, N, p, T by substituting (19) in (22).

In order to evaluate the plasma wave TM mode compo-

nents one will have to find the characteristic values al, a2, y

from the boundary conditions. In the next section we will

derive the equation for tliose eigenvalues.

VI. THE TM MODES CHARACTERISTIC VALUES

In the present section we will derive the transcendental

equation for the characteristic values of the TM modes,

subject to the boundziry conditions.

Using the boundary conditions (1 la) in (19b)

B,+ B2=0 (27a)

A1sinala +B, cosala+ A2sina2a +B2cosa2a =0.

(27b)

From (19a) one sees that the boundary conditions (1 lb) are

satisfied identically.

Substituting the boundary conditions (12) in (23) and

using (25)

(- H, A,+ G, B,)+(-H2A2+G,B2)=0 (28a)

(G, A,+ H, B,)sina,a+(-H,A, +G,B,)cosa,a

+( G2A2+H2B2)sina2a+

(–H,A, +G,B2)CCJSa2a =0. (28b)

From (27) and (28) one obtains four linear homogeneous

equations with four unknowns A,, BI, A2, B2. For a non-

trivial solution the determinant of the coefficients should
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Al B, Az Bz

o 1 0 1

sinala cos ala sinaza cos aza

– H, +Gl – Hz + Gz

G, sina, a- Hlsinala+ Gz sin a2a- Hzsinaza +

–Hlcosala +G1cosala –H2coscqa +Gzcosaza

where G1(Y, ~1), H1(Y, ~1), G2(Y, a2), H2(Y, a2) are defined
by (26). Developing the determinant (29)

2Hl H2(I–cosalacosaza)

=[H~+H~+(G1 –G1)z]sina, asina2a.

(30)

Substituting the values of \al I and Ia2 I from (18) ex-

pressed in terms of y and the plasma parameters in (30)

one obtains a transcendental equation for the propagation

constant y. The solution of this transcendental equation

will give an infinite number of discrete solutions for y = y~.

For each yW,of a particular TM mode one may find from

(18) al~ and az~ and using those characteristic values one
will be able to find the components of the plasma wave of

the particular TMn mode under consideration.

For the particular case of incompressible cold plasma

one has al = O and o = O and (9b) becomes

(1- X)2-Y2
~2+y2=k;

l–x– Y~ “
(31)

From (31) one has a,= al= a and substituting it in (30)

[( H,– Hz)2+(G, –Gz)2]sin2aa=0 (32)

where (32) is an identity since

H1(a1)=H2(a2)

and

G1(a, )= G2(a2).

Using the boundary conditions one obtains a = n n/a.

Once the determinant of the coefficients (27), (28) has

been satisfied through (30), one may ignore one of the

equations, for example (28b) and rewrite (27) and (28) in

the form

B,+ B2=0 (33a)

B,cosa, a+ B2cosa2a+A2sina2a= –Alsina, a

(33b)

G1B1+G2B2– H2A2=H1A1. (33C)

From (33) one may find

Az _ H1(cosa2a –cosa1a)+(G2 –G1)sinala

A, – H2(cosa1a –cosa2a) –(G2– G1)sinaza

(34a)

B I_ HI sina2a – H2sina1a

Al – H2(cosa1a –cosa2a) –(G2– G1)sina2a

(34b)

=0 (29)

and

B 2_ H2sina1a – H] sinaza Bl

Al – H2(cosa1a –cosa2a)– (Gl– Gl)sina2a Al “

(34C)

For an arbitrary value of A,, one may find A2, BI, B2,

from (34). Substituting those values in ( 19b) one may find

EZ in terms of the arbitrary amplitude A,. Once E, is

known, the rest of the plasma TM mode wave components

may be found by using the relations in the previous sec-

tion.

VII. SUMMARY

The propagation of plasma waves in compressible single

fluid macroscopic plasma, between two parallel perfectly

conducting planes with transverse magnetostatic field

parallel to the boundaries, has been discussed. Both the

electromagnetic and the electron-gas-dynamics boundary

conditions have been taken into account. It has been

shown that the TE plasma mode of propagation will not be

affected by either the magnetostatic field or by the com-

pressibility of the plasma. The TM plasma mode of propa-

gation will be affected by both the static magnetic field and

the compressibility of the plasma.

Other cases of propagation between

guides with magnetized compressible

cussed elsewhere.
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Network Representation and Transverse
Resonance for Layered Anisotropic

Dielectric Waveguides,, :.
OmoSCHWELB, MEMBER, IEEE

,4Mract —First, the matrix wave impedance in an unbonnded uniaxial

Iossless dielectric material is determined. Next, &e transforptation proper-

ties of the input impedance of a terminated anisotropic layer are’ estab-

lished. It is then demonstrated that the boundary conditions in an anisc-

tropic dielectric slab waveguide lead to a generalized transverse resonance

condition involving the previously obtained matrix input i.m~dances. Net-

work equivalent representations are given for wavegnides fabricated with

dielectrics in polar and Iongitudbtal orientations. The results show that a

circuit approach to the analysis and deyi~ of planar anisotiopic tilelectrfc

wavegnides is feasible and practicable.
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I. INTRODUCTION

T HE CONCEPT of impedance and equivalent net-

work representation is often used to obtain Me dis-

persion characteristics of isotropic waveguides. As a result

of the additional coupling mechanisms acting between field

components in an anisotropic dielectric, the wave impeda-

nce expands into matrix form, and circuit equivalents are

a great deal more cumbersome. th~ those in the isotropic

case. For this reason anisotropic layered waveguides are

seldom treated by the methods of circuit analysis. Yet,

there are some important configurations where the network

approach provides both insight and a simple solutioh t.o

the guidance problem.
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